THE CHINESE UNIVERSITY OF HONG KONG Department of Mathematics MATH2060B Mathematical Analysis II (Spring 2017) HW1 Solution

Yan Lung Li

1. (P. 171 Q 4$)$

We claim that f is differentiable at 0 with $f^{\prime}(0)=0$.
Proof of claim: Let $\epsilon>0$ be given, choose $\delta=\epsilon>0$. Then for all $x \in V_{\delta}(0) \backslash\{0\}$,
Case 1: x is rational: then $f(x)=x^{2}$, and hence \backslash epilson

$$
\begin{aligned}
\left|\frac{f(x)-f(0)}{x-0}-0\right| & =\left|\frac{x^{2}}{x}\right| \\
& =|x|<\delta=\epsilon
\end{aligned}
$$

Case 2: x is irrational: then $f(x)=0$, and hence

$$
\begin{aligned}
\left|\frac{f(x)-f(0)}{x-0}-0\right| & =0 \\
& <\delta=\epsilon
\end{aligned}
$$

Therefore, for all $\epsilon>0$, there exists $\delta>0$ such that for all $x \in V_{\delta}(0) \backslash\{0\}$,

$$
\left|\frac{f(x)-f(0)}{x-0}-0\right|<\epsilon
$$

Hence, f is differentiable at 0 with $f^{\prime}(0)=0$.
2. (P. 171 Q10)

For $x \neq 0, g(x)=x^{2} \sin \frac{1}{x^{2}}$ is a product of functions which are differentiable at x (where $\sin \frac{1}{x^{2}}$ is differentiable at x by Theorem 6.16). Therefore, by Theorem $6.12, g$ is differentiable at x.

For $x=0$, we claim that g is differentiable at 0 with $g^{\prime}(0)=0$.
Proof of claim: Let $\epsilon>0$ be given, choose $\delta=\epsilon>0$. Then for all $x \in V_{\delta}(0) \backslash\{0\}$,

$$
\begin{aligned}
\left|\frac{g(x)-g(0)}{x-0}-0\right| & =\left|\frac{x^{2} \sin \frac{1}{x^{2}}}{x}\right| \\
& =\left|x \sin \frac{1}{x^{2}}\right| \\
& \leq|x|<\delta=\epsilon
\end{aligned}
$$

Therefore, g is differentiable at 0 with $g^{\prime}(0)=0$.
Hence, g is differentiable for all $x \in \mathbb{R}$.
More explicitly, for $x \neq 0$, Chain rule gives $g^{\prime}(x)=2 x \sin \frac{1}{x^{2}}-\frac{2 \cos \frac{1}{x^{2}}}{x}$; for $x=0, g^{\prime}(0)=0$ by above.
We also claim that g^{\prime} is unbounded on $[-1,1]$: It suffices to show that for any $M>0$, there exists $x \in(0,1)$ such that $\left|g^{\prime}(x)\right| \geq M$.

Given any $M>0$, choose $x \in(0,1)$ satisfying the following inequalities:

$$
\left\{\begin{array}{l}
\frac{1}{x}>\frac{M}{2} \\
\cos \frac{1}{x^{2}}=1 ; \quad \sin \frac{1}{x^{2}}=0
\end{array}\right.
$$

(for instance, choose $x=\frac{1}{\sqrt{2 k \pi}}$, where $k \in \mathbb{N}$ is sufficiently large such that $\sqrt{2 k \pi}>\frac{M}{2}$)
Then we estimate $\left|g^{\prime}(x)\right|$:

$$
\begin{aligned}
\left|g^{\prime}(x)\right| & =\left|2 x \sin \frac{1}{x^{2}}-\frac{2 \cos \frac{1}{x^{2}}}{x}\right| \\
& =|0-2 \sqrt{2 k \pi}| \\
& =2 \sqrt{2 k \pi} \\
& >2 \cdot \frac{M}{2}=M
\end{aligned}
$$

Therefore, g^{\prime} is unbounded on $[-1,1]$.
3. (P. 179 Q5)

Following the hint, we consider $f(x)=x^{\frac{1}{n}}-(x-1)^{\frac{1}{n}}$ where $x \geq 1 . f$ is clearly continuous on $[1,+\infty)$ and differentiable on $(1,+\infty)$. Therefore, Mean Value Theorem (Theorem 6.2.4) is applicable on every finite subinterval $[1, d]$ for any $d>1$.

For any $x>1, f^{\prime}(x)=\frac{1}{n}\left(x^{\frac{1}{n}-1}-(x-1)^{\frac{1}{n}-1}\right)$. Since $x>x-1>0$ and $\frac{1}{n}-1<0, x^{\frac{1}{n}-1}<(x-1)^{\frac{1}{n}-1}$
Therefore, $f^{\prime}(x)<0$ for any $x>1$.
Now given $a>b>0$, consider $d=\frac{a}{b}>1$. Applying Mean Value Theorem to f on $[1, d]$, there exists $c \in(1, d)$ such that

$$
f(d)-f(1)=f^{\prime}(c)(d-1)
$$

Since $c>1$, the above implies $f^{\prime}(c)<0$, and hence $f(d)-f(1)<0$. Writing out the definitions explicitly, we have

$$
\begin{aligned}
{\left[\left(\frac{a}{b}\right)^{\frac{1}{n}}-\left(\frac{a}{b}-1\right)^{\frac{1}{n}}\right]-(1-0) } & <0 \\
a^{\frac{1}{n}}-(a-b)^{\frac{1}{n}} & <b^{\frac{1}{n}}
\end{aligned}
$$

Therefore, $a^{\frac{1}{n}}-b^{\frac{1}{n}}<(a-b)^{\frac{1}{n}}$.

Remark. Many students tried to argue that $f^{\prime}(x)<0$ for $x \geq 1$, which is not true since f is actually not differentiable at $x=1$. Even if $f^{\prime}(x)<0$ for all $x>1$, one cannot immediately deduce that f is strictly decreasing on $(1,+\infty)$ without proving it (which is actually section 6.2 Q13). Finally, even if f is strictly decreasing on $(1,+\infty)$, it does not imply immediately that $f(1)>f(x)$ for all $x>1$, since $1 \notin(1,+\infty)$. One has to use Mean Value Theorem to prove the final claim.

