THE CHINESE UNIVERSITY OF HONG KONG Department of Mathematics MATH2060B Mathematical Analysis II (Spring 2017) HW1 Solution

Yan Lung Li

1. (P.171 Q4)

We claim that f is differentiable at 0 with f'(0) = 0.

Proof of claim: Let $\epsilon > 0$ be given, choose $\delta = \epsilon > 0$. Then for all $x \in V_{\delta}(0) \setminus \{0\}$,

Case 1: x is rational: then $f(x) = x^2$, and hence epilson

$$|\frac{f(x) - f(0)}{x - 0} - 0| = |\frac{x^2}{x}|$$
$$= |x| < \delta = \epsilon$$

Case 2: x is irrational: then f(x) = 0, and hence

$$\left|\frac{f(x) - f(0)}{x - 0} - 0\right| = 0$$

< $\delta = \epsilon$

Therefore, for all $\epsilon > 0$, there exists $\delta > 0$ such that for all $x \in V_{\delta}(0) \setminus \{0\}$,

$$\left|\frac{f(x) - f(0)}{x - 0} - 0\right| < \epsilon$$

Hence, f is differentiable at 0 with f'(0) = 0.

2. (P.171 Q10)

For $x \neq 0$, $g(x) = x^2 \sin \frac{1}{x^2}$ is a product of functions which are differentiable at x (where $\sin \frac{1}{x^2}$ is differentiable at x by Theorem 6.16). Therefore, by Theorem 6.12, g is differentiable at x.

For x = 0, we claim that g is differentiable at 0 with g'(0) = 0.

Proof of claim: Let $\epsilon > 0$ be given, choose $\delta = \epsilon > 0$. Then for all $x \in V_{\delta}(0) \setminus \{0\}$,

$$|\frac{g(x) - g(0)}{x - 0} - 0| = |\frac{x^2 \sin \frac{1}{x^2}}{x}|$$

= $|x \sin \frac{1}{x^2}|$
 $\leq |x| < \delta = \epsilon$

Therefore, g is differentiable at 0 with g'(0) = 0.

Hence, g is differentiable for all $x \in \mathbb{R}$.

More explicitly, for $x \neq 0$, Chain rule gives $g'(x) = 2x \sin \frac{1}{x^2} - \frac{2 \cos \frac{1}{x^2}}{x}$; for x = 0, g'(0) = 0 by above.

We also claim that g' is unbounded on [-1,1]: It suffices to show that for any M > 0, there exists $x \in (0,1)$ such that $|g'(x)| \ge M$.

Given any M > 0, choose $x \in (0, 1)$ satisfying the following inequalities:

$$\begin{cases} \frac{1}{x} > \frac{M}{2} \\ \cos \frac{1}{x^2} = 1; & \sin \frac{1}{x^2} = 0 \end{cases}$$

(for instance, choose $x = \frac{1}{\sqrt{2k\pi}}$, where $k \in \mathbb{N}$ is sufficiently large such that $\sqrt{2k\pi} > \frac{M}{2}$) Then we estimate |g'(x)|:

$$|g'(x)| = |2x \sin \frac{1}{x^2} - \frac{2 \cos \frac{1}{x^2}}{x}|$$
$$= |0 - 2\sqrt{2k\pi}|$$
$$= 2\sqrt{2k\pi}$$
$$> 2 \cdot \frac{M}{2} = M$$

Therefore, g' is unbounded on [-1, 1].

3. (P.179 Q5)

Following the hint, we consider $f(x) = x^{\frac{1}{n}} - (x-1)^{\frac{1}{n}}$ where $x \ge 1$. f is clearly continuous on $[1, +\infty)$ and differentiable on $(1, +\infty)$. Therefore, Mean Value Theorem (Theorem 6.2.4) is applicable on every finite subinterval [1, d] for any d > 1.

For any
$$x > 1$$
, $f'(x) = \frac{1}{n} (x^{\frac{1}{n}-1} - (x-1)^{\frac{1}{n}-1})$. Since $x > x-1 > 0$ and $\frac{1}{n} - 1 < 0$, $x^{\frac{1}{n}-1} < (x-1)^{\frac{1}{n}-1}$.

Therefore, f'(x) < 0 for any x > 1.

Now given a > b > 0, consider $d = \frac{a}{b} > 1$. Applying Mean Value Theorem to f on [1, d], there exists $c \in (1, d)$ such that

$$f(d) - f(1) = f'(c)(d-1)$$

Since c > 1, the above implies f'(c) < 0, and hence f(d) - f(1) < 0. Writing out the definitions explicitly, we have

$$\left[\left(\frac{a}{b}\right)^{\frac{1}{n}} - \left(\frac{a}{b} - 1\right)^{\frac{1}{n}}\right] - (1 - 0) < 0$$
$$a^{\frac{1}{n}} - (a - b)^{\frac{1}{n}} < b^{\frac{1}{n}}$$

Therefore, $a^{\frac{1}{n}} - b^{\frac{1}{n}} < (a - b)^{\frac{1}{n}}$.

Remark. Many students tried to argue that f'(x) < 0 for $x \ge 1$, which is not true since f is actually not differentiable at x = 1. Even if f'(x) < 0 for all x > 1, one cannot immediately deduce that f is strictly decreasing on $(1, +\infty)$ without proving it (which is actually section 6.2 Q13). Finally, even if f is strictly decreasing on $(1, +\infty)$, it does not imply immediately that f(1) > f(x) for all x > 1, since $1 \notin (1, +\infty)$. One has to use Mean Value Theorem to prove the final claim.